PRESCOTT UNIFIED SCHOOL DISTRICT District Instructional Guide
 Date Revised 6/27/18

Grade Level: Fifth	Subject: Math	Time:	Core Text: Engage New York

Time/Days	Module	Topic	Standard/Skills *Repeated/Reinforced	Assessment	Resources

August 7 - September 30	Module 1 Place Value and Decimal Fractions Combine Lessons 9 \& 10	A Multiplicative Patterns on the Place Value Chart 4 Days	5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. 5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. 5.MD. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. 5.NBT. 3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100$ $+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$ (1/1000). b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of	Galileo Test Lessons 1-4 Galileo Test Lessons 5-8	Engage NY https://www.engage ny.org/resource/gra de-5-mathematics Helpful videos http://www.Ipssonlin e.com/site5523.php

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		Fractions and Place Value Patterns 2 Days C Place Value and Rounding Decimal Fractions 2 Days D Adding and Subtracting Decimals Lessons 2 Days	comparisons. 5.NBT. 4 Use place value understanding to round decimals to any place. 5.NBT. 2 Explain patterns in the number of zeros of the product when Add, subtract, multiply and divide decimals to hundredths, using concrete models or drawings multiplying a number by and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use wholenumber exponents to denote powers of 10 . 5.NBT.3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100$ $+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$ ($1 / 1000$). b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. 5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition	Galileo Test Lessons 9 - 10	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		E Multiply Decimals 2 days	and subtraction; relate the strategy to a written method and explain the reasoning used. 5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 . 5.NBT. 3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100$ $+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$ (1/1000). b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. 5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. 5.NBT. 3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100$ $+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$ ($1 / 1000$). b. Compare two decimals to thousandths based on meanings of the digits in each place, using	Teacher Made Test Lessons 11 16	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		F Dividing Decimals 5 Days	>, =, and < symbols to record the results of comparisons. 5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. 5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. 5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote power of 10 . *5.OA. 1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. * 5.OA. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.		

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

October 1 - December 15	Module 2 Multi-Digit Whole Number and Fraction Operations Combine 12,	A Mental Strategies for Multi-Digit Whole Number Multiplication 2 days B The Standard Algorithm for Multi-Digit Whole Number Multiplication	5.NBT. 5 Fluently multiply multi-digit whole numbers using the standard algorithm. 5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. *5.OA. 1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. * 5.OA. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product. *5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. 5.NBT. 5 Fluently multiply multi-digit whole numbers using the standard algorithm. 5.NBT. 5 Fluently multiply multi-digit whole numbers using the standard algorithm. 5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition	End-of- Module Assessment Galileo Test Lessons 1-4 Galileo Test Lessons 5-9	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		7 days C Decimal Multi-Digit Multiplication 3 Days	and subtraction; relate the strategy to a written method and explain the reasoning used. 5.MD. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. *5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. *5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote power of 10 . 5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. 5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote power of 10. 5.NBT. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Galileo Test Lessons 10- 15	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		D Measurement Word Problems with Whole Number and Decimal Multiplication 3 Days	5.NBT. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. 5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote power of 10 . 5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. 5.NBT. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. 5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings	Galileo Test Lessons 1623	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		E Mental Strategies for Multi-Digit Whole Number Division 3 days	and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. 4.NF. 1 Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions 4.NF. 1 Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. 5.NF. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+$ $5 / 4=8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=$ ($a d+b c$)/bd.) 5.NF. 2 Solve word problems involving addition and	Galileo Test Lessons 1623	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		F Partial Quotients and MultiDigit Whole Number Division 5 days G Partial Quotients and MultiDigit Decimal Division 4 days	subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$. 5.NF. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+$ $5 / 4=8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=$ ($\mathrm{ad}+\mathrm{bc}$)/bd.) 5.NF. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$. 5.MD.2 Make a line plot to display a data set of	Galileo Test Lessons 24 - 29	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

| | | Word
 Problems
 with Multi-
 Digit Division
 2 days | measurements in fractions of a unit $(1 / 2,1 / 4,1 / 8)$.
 Use operations on fractions for this grade to solve
 problems involving information presented in line plots.
 For example, given different measurements of liquid
 in identical beakers, find the amount of liquid each
 beaker would contain if the total amount in all the
 beakers were redistributed equally. |
| :--- | :--- | :--- | :--- | :--- |

PRESCOTT UNIFIED SCHOOL DISTRICT District Instructional Guide
 Date Revised 6/27/18

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

February 21 - March 30	4 Multiplication and Division of Fractions and Decimal Fractions	Applications 4 days A Line Plots of Fraction Measurement s 1 day	multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product of $(\mathrm{a} / \mathrm{b}) \times \mathrm{q}$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $\mathrm{a} \times \mathrm{q} \div \mathrm{b}$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(\mathrm{a} / \mathrm{b}) \times(\mathrm{c} / \mathrm{d})=\mathrm{ac} / \mathrm{bd}$.) 5.NF. 6 Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. 5.MD. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. *5.NF.4b Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. b . Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. 5.NF. 5 Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b . Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by	End-of-the Module Assessment	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		4 days D Fraction Expressions and Word Problems 3 days	b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real world problems involving division of unit fractions by non- zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins? 5.OA. 1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. 5.OA. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product. 5.MD.3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of	Galileo Test Lessons 6 12 Galileo Test Lessons 1316	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		E Multiplication of a Fraction by a Fraction 8 days	volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. *5.MD. 4 Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft, and improvised units. 5.MD. 3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. 5.MD. 5 Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. a. Find the volume of a right rectangular prism with wholenumber side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. b. Apply the formulas $\mathrm{V}=\mathrm{I} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{b} \times \mathrm{h}$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by	$\begin{aligned} & \text { Galileo Test } \\ & 19-21 \end{aligned}$	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		F Multiplication with Fractions and Decimals as Scaling and Word Problems 4 days	adding the volumes of the non-overlapping parts, applying this technique to solve real world problems. 5.NF.4b Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. 5.NF. 6 Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem 5.G. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. 5.G.4 Classify two-dimensional figures in a hierarchy based on properties. 5.G.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		G Division of Fractions and Decimal Fractions 7 days	coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., axis and \square-coordinate, \square-axis and \square-coordinate). 5.OA.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product. 5.OA. 3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. 5.G. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in	Galileo Test 25-30 Galileo Test	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

| | | the plane located by using an ordered pair of
 numbers, called its coordinates. Understand that the
 first number indicates how far to travel from the origin
 in the direction of one axis, and the second number
 indicates how far to travel in the direction of the
 second axis, with the convention that the names of
 the two axes and the coordinates correspond (e.g.,
 axis and \square-coordinate, \square-axis and \square-coordinate) |
| :--- | :--- | :--- | :--- | :--- |
| | 5.G.1 Use a pair of perpendicular number lines, called
 axes, to define a coordinate system, with the
 intersection of the lines the origin) arranged to
 coincide with the 0 on each line and a given point in
 the plane located by using an ordered pair of
 numbers, called its coordinates. Understand that the
 first number indicates how far to travel from the origin
 in the direction of one axis, and the second number
 indicates how far to travel in the direction of the
 second axis, with the convention that the names of
 the two axes and the coordinates correspond (e.g.,
 axis and \square-coordinate, \square-axis and $\square-$ coordinate).
 $5 . G .2$ Represent real world and mathematical
 problems by graphing points in the first quarant of
 the coordinate plane, and interpret coordinate values
 of points in the context of the situation. | |

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

April 3-27	5 Addition and Multiplication with Volume and Area Omitt Lessons 8 \& 9	H Interpretation of Numerical Expressions 2 days A Concepts of Volume 3 days	example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. 5.G.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. *5.NF. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$. * 5.NF. 3 Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 - pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer	End-ofModule Test Galileo Test	

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

		Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. b. Apply the formulas $\mathrm{V}=\mathrm{I} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{b} \times \mathrm{h}$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems. *5.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	C Area of Rectangular Figures with Fractional Side Lengths 6 days	Galileo Test

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised 6/27/18

May $1-18$ (40 days)			6 days		
		A Coordinate Systems 6 days			

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised 6/27/18

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised 6/27/18

		C Drawing Figures in the Coordinate Plane 5 days		t	

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised 6/27/18

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised 6/27/18

				Galileo Test	

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised 6/27/18

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised 6/27/18

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised 6/27/18

				End-of- Module Assessment	

