PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised August 2020

Grade Level: 7th Grade	Subject: Math	Time:	Core Text: EngageNY website

Time/Days	Module	Topic	Standards/ Skills	Assessment	Resources
Aug 6 - Oct 9 *Includes 2 Days For Galileo Pre-Assessm ent Topic A: 2 Weeks	Module 1 Ratios and Proportional Relationships	45 Days Topic A = Proportional Relationships (Lessons 1-6)	Analyze proportional relationships and use them to solve real-world and mathematical problems. 7.RP.A. 2 Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. 7.RP.A. 2 Recognize and represent proportional relationships between quantities. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	Module 1 Assessments (Scroll down to page 15 for the Mid-Module 1 Assessment and page 33 for the End of Module 1 Assessment)	Engage NY - Module 1 Teacher Materials Student Materials Exit Tickets (end of class activity or questions)

PRESCOTT UNIFIED SCHOOL DISTRICT
District Instructional Guide
Date Revised August 2020

Topic B: 2 Weeks Mid-Module 1 Assessment 3 Days (Lessons 1-10)		Topic $B=\underline{\text { Unit }}$ Rate and Constant of Proportionality (Lessons 7-10)	c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0 , 0) and ($1, r$) where r is the unit rate. Solve real-life and mathematical problems using numerical and algebraic expressions and equations. 7.EE.B.4. Use variables to represent quantities in a real world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised August 2020

Topic C: 2.5 Weeks		Topic C = Ratios and Rates Involving Fractions (Lessons 11-15)	7.RP.A. 1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2 miles per hour. 7.RP.A. 3 Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error. Solve real-life and mathematical problems using numerical and algebraic expressions and equations. 7.EE.B. 4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of		

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide

Date Revised August 2020

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised August 2020

Oct 19 - Dec 18 *Includes 2 Days For Galileo CBAS Topic A: 2 Weeks	Module 2- Rational Numbers	30 Days Topic A = Addition and Subtraction of Integers and Rational Numbers (Lessons 1-9)	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. 7.NS. 1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance \|q	from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c. Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+(-\mathrm{q})$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	Mid-Module 2 Assessment End-of-Module 2 Assessment	EngageNY - Module 2 Teacher Materials Student Materials Exit Tickets (end of class activity or questions)

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised August 2020

| Topic B: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 Weeks |

PRESCOTT UNIFIED SCHOOL DISTRICT
District Instructional Guide
Date Revised August 2020

Topic C: 2 Weeks End of Module 2 Assessment 3 Days		Topic C = Applying Operations with Rational Numbers to Expressions and Equations (Lessons 17-21)	problems involving the four operations with rational numbers. 18 Use properties of operations to generate equivalent expressions. 7.EE. 2 Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05 ." Solve real-life and mathematical problems using numerical and algebraic expressions and equations. 7.EE. 4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?

PRESCOTT UNIFIED SCHOOL DISTRICT
District Instructional Guide
Date Revised August 2020

Dec. 7 - Feb. 26 Topic A: 2 weeks	Module 3 - Expressions and Equations	35 days Topic $\mathrm{A}=\underline{\text { Use }}$ Properties of Operations to Generate Equivalent Expressions (Lessons 1-6)	Use properties of operations to generate equivalent expressions. 7.EE.A. 1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. 7.EE.A. 2 Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05 ." Solve real-life and mathematical problems using numerical and algebraic expressions and equations. 7.EE.B. 3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of	Mid Module 3 Assessment End of Module 3 Assessment	EngageNY - Module 3 Teacher Materials Student Materials Exit Tickets (end of class activity or questions)

PRESCOTT UNIFIED SCHOOL DISTRICT
District Instructional Guide
Date Revised August 2020

Topic B: 3 weeks Mid-Module 3 Assessment 2 Days (Lessons 1-15)		Topic B = Solve Problems Using Expressions, Equations, and Inequalities (Lessons 7-15)	$\$ 27.50$. If you want to place a towel bar 9 3/4 inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation. 7.EE.B. 4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the Quantities. b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions. Solve real-life and mathematical problems involving angle measure, area, surface area, and Volume. 7.G.B. 4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide

Date Revised August 2020

PRESCOTT UNIFIED SCHOOL DISTRICT
District Instructional Guide
Date Revised August 2020

March 1 Apr. 16	Module 4 - Percent and Proportional Relationships	25 days	Analyze proportional relationships and use them to solve real-world and mathematical problems.	Mid Module 4 Assessment End of Module 4	EngageNY - Module 4 Teacher Materials
*Includes 3 Days For AZMerit (State			7.RP.A. 1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks	Assessment	Student Materials
Testing) practice			12 mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 21 / 4 /$ miles per hour, equivalently 2 miles per hour. 7.RP.A. 2 Recognize and represent proportional relationships between quantities.		Exit Tickets (end of class activity or questions)
Topic A: 1 Week		Topic A = Finding the Whole (Lessons 1-6)	a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.		
Topic B:		Topic B =	c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.		

PRESCOTT UNIFIED SCHOOL DISTRICT
District Instructional Guide
Date Revised August 2020

2 Weeks Mid-Module 4 Assessment 2 Days (Lessons 1-11) Topic C: 2 Weeks		Percent Problems Including More than One Whole (Lessons 7-11) Topic C = Scale Drawings (Lessons 12-15)	d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$, where r is the unit rate. 7.RP.A. 3 Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error. Solve real-life and mathematical problems using numerical and algebraic expressions and equations. 7.EE.B. 3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide
Date Revised August 2020

| End of
 Module 4
 Assessment
 3 Days | | | Draw, construct, and describe geometrical
 figures and describe the relationships
 between them. | |
| :--- | :--- | :--- | :--- | :--- | :--- |

PRESCOTT UNIFIED SCHOOL DISTRICT
District Instructional Guide
Date Revised August 2020

Topic A: 1 week Topic B: 1 week Topic D: 2 weeks Apr. 19 - May 21 *Includes 2 Days For Final Exams schedule	Module 6B Module 5 - Statistics and Probability	Topic B = Constructing Triangles (Lessons 5-10) Topic $\mathrm{D}=$ Problems Involving Area and Surface Area (Lessons 20-24)	figures, as in plane sections of right rectangular prisms and right rectangular pyramids. Solve real-life and mathematical problems involving angle measure, area, surface area, and volume. 7.G.B. 5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure. 7.G.B. 6 Solve real-world and mathematical problems involving area, volume, and surface area of two and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. Use random sampling to draw inferences about a population. 7.SP.A. 1 Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	Mid Module 5 Assessment End of Module 5 Assessment	EngageNY - Module 5 Teacher Materials Student Materials Exit Tickets (end of class activity or questions)

PRESCOTT UNIFIED SCHOOL DISTRICT
District Instructional Guide
Date Revised August 2020

Topic A: 2 weeks Topic B: 2 weeks	Module 5	Topic $\mathbf{A}=$ Calculating and Interpreting Probabilities (Lessons (1-7) Topic B = Estimating Probabilities (Lessons 8-12)	7.SP.A. 2 Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be. Draw informal comparative inferences about two populations. 7.SP.B. 3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable. 7.SP.B. 4 Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example,

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised August 2020

PRESCOTT UNIFIED SCHOOL DISTRICT
 District Instructional Guide
 Date Revised August 2020

			a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? 7.SP.C. 8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	

PRESCOTT UNIFIED SCHOOL DISTRICT

District Instructional Guide

Date Revised August 2020

| | | c. Design and use a simulation to generate
 frequencies for compound events. For example,
 use random digits as a simulation tool to
 approximate the answer to the question: If 40%
 of donors have type A blood, what is the
 probability that it will take at least 4 donors to
 find one with type A blood? | |
| :--- | :--- | :--- | :--- | :--- |

